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Abstract

This paper develops an equilibrium theory for two-person two-criteria

stochastic decision problems with static information patterns, wherein the

decision makers (DM's) have different probabilistic models of the underlying

process, the objective functionals are quadratic and the decision spaces are

general inner-product spaces. Under two different modes of decision making

(viz. symmetric and asymmetric), sufficient conditions are obtained for the

existence and uniqueness of equilibrium solutions (stable in the former case), and in

each case a uniformly convergent iterative scheme is developed whereby the equilibrium

policies of the DM's can be obtained by evaluating a number of conditional

expectations. When the probability measures are Gaussian, the equilibrium solution

is linear under the symmetric mode of decision making, whereas it is generically

nonlinear in the asymmetric case, with the linear structure prevailing only in

some special cases which are delineated in the paper.
*1*A

.9./.
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1. Introduction

A tem is defined as a group of agents who work together in a

coordinated effort in a possibly hostile and uncertain environment in order

to achieve a common goal. In achieving this goal, the members of the team

do not necessarily acquire the same information, and hence they have to operate

in a decentralized mode of decision making. The scientific approach to

formulation and analysis of team problems has involved (i) a quantification of

* the underlying common goal in the form of a (mathematical) objective function

which is sought to be optimized jointly by the agents, and (ii) a modeling

of the uncertain environment and the possible measurements made by the agents -

on this environment in the form of a probability space together with an

appropriate information structure (14,7,15,16]. The underlying stipulation here

has been the existence of a probability space that is common to all the agents,

so that through their priors all members of the team "see the world" in exactly .4

the same way.

One question that readily comes into mind at this point is the

robustness of such a mathematical model and the "optimum" solutions it produces,

to slight variations in the underlying assumptions. In particular, what if the

agents perceive the outside world in slightly different ways? Would the

" - solution obtained under the assumption of common prior probability measures

change drastically if there are discrepancies in the agents' perceptions of the

probabilistic description of the outside world? In order to be able to answer

. these queries satisfactorily and effectively, we need a theory of equilibrium

for decision problems in which the decision makers (DM's) have different

probabilistic models of the system; such a general theory will clearly subsume

the currently available results on teams which use a common probability space.
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Consider a static team decision problem, formulated in the standard

manner as in [7], with the only difference being in the underlying probability

space. In particular, assume that the DM's assign different subjective

probabilities to the uncertain events, in which case there will not exist a

common probability space, thereby leading to a different expected (average)

cost function for each DM. Hence, once we relax the assumption of existence

of a common probability space, the team problem is no longer a stochastic

optimization problem with a single objective functional, and we inevitably

have to treat it as a nonzero-sum stochastic game [5,8,121. Furthermore, even

though the original team decision problem with a common probability space

will admit the same team-optimal solution(s) regardless of the mode of

decision making (that is, regardless of whether the roles of the DM's are

symmetric or whether there is a hierarchy and dominance in decision making),

this feature ceases to hold true when there exists a discrepancy between the

perceived probability measures. When there are only two members, for example,

two possibilities emerge in the presence of discrepancies: the totally

symmetric roles, corresponding to the Nash equilibrium solution, and the

hierarchical mode, corresponding to the Stackelberg equilibrium solution.

Motivated by these considerations, we treat in this paper a more

general (than team) class of two-person stochastic decision problems which
'~"..

can be viewed as static stochastic nonzero-sum games with the DM's having

different subjective probability measures. Adopting both the symmetric and

asymmetric modes of decision making, we develop in each case a general "*

theory of equilibrium when the objective functionals are quadratic and the



decision spaces are appropriate Hilbert spaces. Such a formulation includes both

finite-dimensional (discrete) and continuous-time decision problems, and involves

arbitrary probability measures which are, though, restricted a posteriori by the

conditions of existence and uniqueness developed in the paper. The special case of

Gaussian distributions is studied in considerable depth, and some explicit solutions

are obtained with appealing features.

The organization of the paper is as follows. The next section (§2)

provides a precise problem formulation, and introduces the two solution concepts

adopted in the paper. Section 3 develops general conditions for existence and

uniqueness of a stable equilibrium solution under the symmetric mode of decision

making, and elucidates the extent of the restrictions imposed on the problem by

these conditions. Section 4 presents a counterpart of the results of Section 3

under the asymmetric mode of decision making, with the mathematical machinery

used being inherently different from that of §3. Section 5 deals with the special

class of Gaussian distributions, under both symmetric and asymmetric modes of

decision making. In the former case it is shown that the unique stable equilibrium

solution is affine in the measurements and can be obtained explicitly. In the

latter case, however, the solution is generically nonlinear, and contains summation

of terms which involve products of linear functions of measurements with exponential

terms (whose exponents are quadratic in the measurements). The section also contains

some discussion on finite-dimensional and continuous-time problems, treated as

special cases. Section 6 is devoted to discussions on possible extensions of

these results in different directions, provides some interpretation of the

• general approach and results, and includes some concluding remarks. The paper ends

with five Appendices which include results used in the main body of the paper.

L

C~~ ~~~~ . . .. -. .. . . .-- - - - - - -
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2. Mathematical Formulation and Some Basic Results

2. Frobabiliy Spaces'i I m l  m2

n 1Let Q = )R x R x R =X x Y x Y B denote the Borel field
1 2'-

k kof subsets of Q, and B denote the Borel field of subsets of R , k = n, mi, m 2 .

Let P denote the set of all probability measures on (Q,B) with finite second

-:i moments, and for each PEP denote the corresponding marginal measures on

Bn ml and B by Px , P and P , respectively. Furthermore, let the

collection of all such probability measures be denoted by P P and PX . Yl Y2

,x" .respectively. Then, for each PEP, the vector z = (x, Y' yY taking values

in 2, becomes a well-defined random vector on (0,B,P), and likewise x is a
m. iM.

random vector on ()n, and yi is a random vector on (IF R ,B , )

Here, x denotes the unknown state of Nature, and yi denotes an

observation of DMi (i'th decision maker) which is correlated with x. We now

1 2choose two elements out of P, P and P , which denote the subjective probabilities

assigned to z by DM1 and DM2, respectively. For technical reasons, we place

some further restrictions on the choices of P and P2 through the marginals

P ; in particular we assume that
1 2

Condition Q).P Y2 and P are absolutely continuous [1] with respect to P 2

and P1  respectively; that is, using the standard notation in probability
y1

theory,

p1 < 2 , 2 1 l()

Y2 Y2 YJ Yl

Concitzcn ). The Radon-Nikodvm (R-N) derivative [1]

g'( )= dPJ /dP' , i (2)
Yi Yi

is uniformly bounded a.e. , i=1,2.
V.

-i

-. . . . . .4 4YA ,. -
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The necessity of these two conditions in the formulation of our problem will be

made clear in the sequel. We should note, however, that for the special case

1 2 -when P is equivalent to P , both of these conditions are satisfied (in the latter -'

case the bound is equal to i) and we have the standard decision theoretic framework

[2] with a single probability space.

2.2. Decision and Policy Spaces

The decision variable of DMi will be denoted by u. which belongs to a
1

real separable Hilbert space U. with inner product (','). Permissible policies

(decision rules) for DMi are measurable mappings

1 i M U fly ( )12 P I (dE) < (3)

where I. II. is the natural norm derived from (,)i._ Let F. denote the space of

all such policies, which is further equipped with the inner product

< Y,3 >. f (( ),( ))i P (di) (4)

1 yi

Then, we have the following two results the first of which is standard [3] and

the second one involves a change of measures using the R-N derivative.

Lemma 1. F. is a Hilbert space.

Lemma 2. If Conditions (1) and (2) are satisfied, every element of F. has

bounded second-order moments also under P jji.

iY-, 2. 7. Cost Funct-iona7,3

Let D. U. - U (i~j, i,j=1,2) be strongly positive bounded linear

operators, and F: X- U. be bounded linear operators for all i,j=l,2.

Furthermore, let E ii (z)yi] denote the mathematical expectation of a

That is, there exists a " 0 such that (u,D.ju). > a(uu)j for all

uEU..J "

I,-. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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z-measurable random variable Pi (z) taking values in U. conditioned on the
1

irandom variable Yi' and under the probability measure P, i.e.

r b

E., E [P(z) lyi  f11(z)Pli .  (dzly i ) (5

" where the second term of the integrand is the conditional probability measure

derived from P i. Then, for each pair (yiY 2) E r 1 X2, we have a quadratic expected

cost functional for each DM, defined for DMi by

i 2i
-$ Y.

~ ~ + fD...(,).Ei[F"xly]>JJ1Y) 11 (yj( ) ipi (di) - 17 F

, . (6)

- (y.(.), Fix).P (dx,Y.,dE) - <Yi , Ei ID Y(y.)1y.]>
XxY. J j 1

every term of which can be shown to be finite, in view of Lemmas 1 and 2. Note

that in the absence of Conditions (1) and (2), J. is not necessarily finite and

hence the problem is not well defined.

It is worth mentioning here that J. describes a most general type of

quadratic cost functional which is strictly convex in ui, and that the formulation

here covers also the cases of team problems

D 1 2*, 1 2(Di = I, D2 21' F = F., i,j=l,2, i#j) and zero-sumjgrnes

i, 1 2* 1 2(D, D21  F. F. i,j=l,2, i j). But even in these "single2 2

loss-functional" problems, the DM's will have inherently different expected

cost functions whenever P1 and P2 are different, since then a common probability

space does not exist. This forces us to formulate the problem as a multi-

criteria optimization problem and introduce equilibrium solution concepts that

would be appropriate in this framework.

A superscript (') designates the adjoint of a given linear operator
defined on a Hilbert space, and I designates the identity operator.

*.1.%,,' ', , / " ' k51 l ~ / I] m i , , .. , , ". 
'

, ',, ,'.:,',,,: , ... . . . .. . . ' - -. ". ' - . ' .. " _ ' " "- -. .
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2.4. EquiZibrium Solution Under the Symmetric Mcde of Decision Making

Since the expected cost functionals (6), together with the policy spaces,

provide a normal (strategic) form description, regardless of the presence of

multiple probability measures, the standard definition of noncooperative (Nash)

equilibrium (5] remains intact, which is the most reasonable solution concept

here under the symmetric mode of decision making.

Definition 1. A pair of policies (yl,y) _ 1 x F2 constitutes a Nash equilibrium

solution if

0

NA"" Definition 2. A Nash equilibrium solution (y1,y ) is stable if for all
.['( 0), _ ( ) -F1  2

li (k) 0 W , in ri i=1,2, (8)

1 1 1

where
(k) (k-l) (9a)
Ik) = arg min Jl(YIly )

r2

*2 W2~ ,r i , k=1,2 ..... (9b)

Remark 1. The notion of stable equilibrium makes particular sense (and is of

*/ paramount importance) in decision problems wherein the DM's have different priors

on the uncertain quantities, because it is determined as the outcome of a natural

iterative process. In this process, each DM responds optimally (using his priors)

*. to the most recent decision (policy) of the other DM, with the priors on which

this decision is based being irrelevant. In other words, even though the computation

of the Nash equilibrium solution will depend on the different prior probability

S .' - *.' .v .'. v . *-, - " i . " " ." " ".' -" . . ,S- * S... " -- " • ". -".. . "-. - .. S.' *
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measures perceived by two DM's, in the iterative procedure that leads to this

equilibrium each DM has to know only his own prior and the other one's announced

policy at the previous step. For an earlier utilization of this concept in a

deterministic setting we refer the reader to [28]. 4.,

2.5. Eauilibrim Solution Under an Asymmetric Mode of Decision Making

In the case of the asymmetric mode there is a hierarchy in decision

making, which permits one DM (say DM1-leader) to announce and enforce his policy

. on the other DM (follower). The relevant solution concept here is the leader-

follower (Stackelberg) solution which is introduced below.

* Definition 3. A pair of policies (yi,v2) E l x F constitutes a leader-follower

12 1 2 7

(Stackelberg) equilibrium solution with unique follower responses, if there exists

a unique mapping T F1  2 satisfying
T2  1 2

2(i,2[(-(1 T J 2 (-'l,Y 2 ) V (2 1 x F2 (10) __

and furthermore

J (ysT 9 []) <J(y 1,T 2 l]) , V¥1 E Il (11)

with

= T2 l ],'

Remark 2. The uniqueness condition on T2 is satisfied in our case, because J2 is

strictly convex (and quadratic) in y,.C

Remark 3. The solution introduced above may not, at first glance, appear to be an

equilibrium solution, because of the strict ordering of the DM's. However, it can

be shown, by following an argument first developed in [17], that the Stackelberg

solution can be viewed as the so-called "strong equilibrium" cf a decision problem

with a modified (dynamic) information pattern [see Appendix E].
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3. General Conditions for a Stable Equilibrium Solution

Under the Symmetric Mode

We now obtain some general conditions for existence of stable equilibrium

solutions under the symmetric mode of decision making, and also consider some

special cases when the probability measures of both DM's are absolutely continuous

with respect to the Lebesgue measure (i.e. when densities exist). Firstly we have

• Proposition 1. A pair of policies (yiy2) E F x 2 constitutes a Nash equilibrium1y 2y 1 2

solution to the decision problem of §2, if, and only if, it satisfies the pair of

equations (under the notation of (5)):

112 [loy2ll 110- 2 ( 2a)y (y)= D E[y(y 2)1y 1 1 + F1 E [x2b

2 D2 1  [y1 (yl)1Y2
] + F2 E2[xIY 2 ].

Poof%. This result follows from a simple minimization of the two quadratic forms

Jl(Yl,yo) and J2 (y ,y2 ) on the two Hilbert spaces r1 and F2, respectively, and by

virtue of the fact that these two quadratic forms are positive definite in the

P. relevant variables. 0

By the same argument used in the proof of Proposition 1, relations (9a)

and (9b) in Def. 2 can equivalently be written as

(k) 1 1l(k-1) 1
= D1 2 E[yk (y2)jyl] + F1 E lxlyI

]  (13a)

(k) 2 2 (k-l) 2 2
Y2 =D 21 E [y1  (y1)y2] + F2 E [XY 2] , k=l,2, (13b)

Now, substituting (13b) into (13a), and also (13a) into (13b), by appropriately

matching the superscripts, we arrive at the following two recursive relations:

j- (k ) = E (yi) yYj= i  + F. E [x vy
Yi Dj ji iL'"

(14~)

+ Di.Fr E[EJ [xly. l ,YI j~i=1,2; j~i; k=2 ,4,... or k=3,5,...
,. "
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Note that if the recursive scheme (14) converges for even values of k, it also

converges (to the same limit) for odd values of k [this follows from expressions

(13a)-(13b)]. Hence, we confine attention only to even values of k and obtain the

following result as a direct consequence of the foregoing analysis:

Proposition 2. A pair of policies (y1,y) E f1 x r2 constitutes a stable Nash

(0) (0))equilibrium solution if, and only if, for all (y10,y 20) E F1 x F2 ,

Y yi) = lim y 2k(y) in ri  ,(15)

1 iZ(2k)=

where ykl,2,..., is given recursively by (14). Furthermore, such a stable

equilibrium solution is necessarily unique. 0

Let us now introduce linear operators i: F. - F., i=1,2, by

(y) = D1 D El[Ej[y(yi)y j] Iyi l  j#i; i,j=1,2. (16)
- 1 ijji 1 • 1

Note that indeed maps r into F., because the conditional expectation

EJ[D y(yi)Yj]y maps r into r. (ji) when the probability measures satisfy

3fld.Tond ons (1) and (2), and every element of Fi is square-integrable under beth pi

and PJ (cf. Lemma 2).
Yi

Furthermore, let us introduce the notation <<5>> to denote the norm
i

of a linear bounded operator $: Fi  i which is defined by

= ]1/2
<<$>>i = sup [<$y,$y> i/<yy>i ]1 /  , (17a)

YEF.
1

and r.(U) to denote the spectral radius of , which is defined by [see Appendix A]

r = lim sup [ k>>] 1/k (17b)

kk

where k denotes the k'th power of $ Finally, let us introduce the linear

operators

.4.i 1



I - - IV -- SC I

D D D! (18a)
ij iP and

-- E E [EJ [.lyj ]yi I  (18b) -

both of which map ri into itself (the former also maps Ui into itself). Then,

the following Proposition, whose proof depends on a contraction mapping

argument (see Appendix B), provides a set of necessary and sufficient conditions

K'i for existence of the unique equilibrium solution alluded to in Prop. 2.

Theorem 1. (i) Under Conditions (1) and (2), the decision problem of Section 2 admits

a unique stable Nash equilibrium solution given by (15) if, and only if, there exists,
i o i.

for at least one i=1,2, a p , 0<0 <1, such that

(D P ) <0 (19)
'1 1

(ii) A set of sufficient conditions for (19) to hold true is the existence

of a pair of positive scalars (p ,pi), such that
i i ) i (Pi i

11<1 , r(D < ,9 r' (P <2 (20a)
1 2 i - 2L..

Furthermore, a set of sufficient conditions for the latter two is

i i - i -4-
<< >>. I <~ Pl << <ii P i (20b)

where 11.11 denotes the operator norm on U., as a counterpart of (17a).

Proof. See Appendix B. o

Part (ii) of Thm. 1 provides a partial separation (in terms of sufficient

conditions) of the deterministic and stochastic parts of the system. Now, if

the decision problem is a team problem with a common loss functional [which

1 1 2 1 2 1 2
requires D22 I, 12= D2 1 , F1 = F1 and F2 F2 ], and if team cost is strictly

,.............................................. .'................-.........................:
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12 121= < iconvex in the pair (u,u 2) [which is true if and only if 1ID
1 D i = 1 < 1], it

follows that the first inequality holds with Pl= 1 < 1. If, furthermore, the

- subjective probability measures assigned to the pair (y1,y2) by the two DM's are

equivalent, P i becomes the product of two projection operators, thus leading

to satisfaction of the second inequality in (20b) with P2 = P2 = 1, and thereby to

satisfaction of (20a). Hence, as a corollary to the second part of Prop. 3, we

obtain the following result which is known in different contexts [7,8,9].

Corollary 1. For the strictly convex'quadratic team problem with equivalent subjectiv

probability measures assigned by the two DM's to (ylY 2), there exists a unique stable.

equilibrium solution (the so-called team-optimal solution), irrespective of the

underlying common probability measure. 0

192
For team problems with Pl*P2, a result along the lines of Corollary I does

not in general hold, because the operator Pili is not necessarily the product of two

projection operators. Then, the general condition is (19) [or the stronger one, (20a)

which places some restrictions on the parameters of the cost functional, as well as

1 2
the probability measures P and P. To delineate the extent of these restrictions,

we now study the second inequality of (20b) somewhat further and obtain the following

* sufficient condition.

Corollary 2. For a given P2, the second inequality of (20b) is satisfied if the

expression
,.. g (Yi)EJ[gj(y.)JYi]  ; (yi)f gJ n (dnlF, y )  (21a)

J J
1 2 i

is uniformly bounded from above by (p2 a.e. P. Furthermore, if the probability

measures P and P are absolutely continuous with respect to the Lebesgue measure,

*" - this condition can be expressed equivalently in terms of the probability densities

i
p (yi,yj) as follows:

found 'This result is slightly more general than the related ones that can be
found in [7,8,9], since here Pl is allowed to be different from P2 , though still a
restriction is imposed on these (indirectly) via the equivalence between Pl and
2 Y1VY 2

*~ .** .**.*2-

41 
. '
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p (y)

i_ ((p y (nY ip (2ldn < (21b)

ij f ly 1 jy J(i YJ
....

Proof. For (21a) see Appendix C; (21b) follows readily from (21a). .

or%%

,'q.L

, ... .:I
-"'!
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4. General Sufficient Conditions for a Stackelberg
Equilibrium Solution -7

We now turn our attention to the asymmetric mode of decision making,

obtain some general sufficient conditions for existence of a Stackelberg equilibrium

solution, and provide a complete characterization of the solution. Subsequently we

consider some special cases with some further structure imposed on the cost functional&

.* and the probability measures.

Firstly we obtain an expression for DM2's unique reaction T2: l -1 r2 9 as ,.

defined by (10), using Prop. 1:
o2 2 2--2T2[Y] = y2(Y) = D21 [Y 1 1 )Iy 2 ] + F22 [xY (22)

"" s1 invoves ix vew o
Hence, the derivation of the leader's Stackelberg policy yl E l e (

(11)) the minimization of J over F after y2 given by (22) is substituted in. This

substitution yields

j (y) jl(y,y2) <yY> + f F 2E2 [x y2 ]

+ 2 [1] 2 2 1 2 E 2 [xY]) p1 (d)

22D21E [Yiy 2] 22D2 1E 1) D 2 2 2 E 2  Y2

11 i ~ (23)

- <y, E [F 1xly]>I + f (D21 E 2 [Y(y)Iy 2I + F2E 2[xiY2 , F2 x) 2  3)
,\" XxY2

P 1 (dx,Yld )

E1  1 2 2 E1 122
2<y, [D 2D21E [y(Yl)Iy 2 ]ly l ] +E [D1 2F2 [x[Y 2]yl]>l,

where we have deleted the subscript 1 in y in order to simplify the notation.

Now, since F is a linear space, and J is the sum of terms homogeneous of degree
1

zero, one and two (maximum), any minimizing solution yEFI will have to satisfy

jr.:1
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AJ(y ; h) - J(y+h) - J(y) = 6J(y ; h) + 6 J(y ; h) > 0 VhErl, (24)

where 6iJ(y ; h) is the Gateaux variation of J(y) of degree i. Extensive

manipulations, details of which are given in Appendix D (subsection 1), lead to

the following expressions for 6J and 6 2j:

6J(y ; h) = <h,y>1 - f (h(y1 ), (2y)(yl)) 1 (dyl)Y 1 Yl

(25)

1p1(d)
f 1(h (y ) ' (y ))I P1(Y

1 1 1 1 1 22

6 J(y h) <h, + 1 f (h(y 1 ),g (y 1 )E 2[g 2(y 2 )D 2 1 D2 2 D2 12i 12( 2 h) 1 1 2 21 2212

2(26)

E[h(E) y2 ] Y 1 ) P 1 (dyl) <h,Dl 1D )h>
2i Y1

where 7: -F1 and 3F I are defined by

**

1D 2 1  1  (yl)
(Py)(Y I (D12D21pI D 

(27a)

S21 2 2 D21 g 2 g(y)E2[g2(y2 )E2[),(y)IY 2]Yl]ii 21 22

3(y)- F 1E[xly] - D2 1D22F 2 g (yl)E[g 2(y2 )E [xlY 2 ] Y]

(27b)

-D 2 F2E 1 [E2[xly2]IYI] + D2 F1 g (Yl)E 2 [g2 (y)E 1 [x!Y 2 ]IYl].

PI : UI -41 is a linear operator given by

PIIY( = E1 [E2[y(Y l ) iy jlyl] , (28)

'Here 51J is written simply as -J.

-If

"7 .'7.........................".".""....."."...."".....-...."". " "". - ,".''-''.2. "-. .',t . .'".'.'7
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I is the space of y1-measurable random variables taking values in UI, and are -ar

the R-N derivatives (2). Note that P is related to Pill defined by (18b) by

P Pill[Y(Yl1) ] (PIIIY)(yl) 2i

where the latter (which is a mapping from r into rI) has been used in (26) and will
1 1

also be used in the sequel whenever needed.

.4 Now, since (24) is also equivalent to

6J(y,h) = 0 VhErlI

2- (29)
6 J(y,h) > 0 VhEF1  .

a Stackelberg solution yEr I will exist for the leader if, and only if,

(i) (26) is nonnegative definite,

", -I
and (from (25)):

p1
(ii) y(yl) - ( y)(yl) - B(Yl) = 0 , a.e. p1 (30)

Since the first of these conditions does not depend on y, the optimal solution

is solely determined by (30), which can be rewritten as

-(Y 1) DI2D21E [E 
2 [y(y ) ly2] Ily.] + DD2 y1 1 E2 [g2(y )E.1 [Y(y )1 IY] ,

2 2 2 2 2

SD 21F2 (g (y )E2[g2 (y )E 1x~y2Uy D 1 (Y )E2 [g (y,)E [y(y 1) y2  ] I

_ri 1- (l )E2 ]'v] + D F2E [E

FE xlyj D D r-g y[g-(v,) 9 [x 1 122 ~ 'I21v
1 1 21 2922~ 1 1

(31)

_ where we have utilized the fact that the adjoint of PI 1 is a linear operator

.l UI-. I' given by. [see Appendix D, subsection 23

.ig n

-~ ~ .. ' . . . -. '""- """-..• . ... " "° -*'-"'" , '. .''""., ,,-'. "-,' .- - "- .. • .. "
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P I (dnxdy2)P
2 (dyxd1

l y!; fy( n•j 1l2 = g (yl)E 2[g 2(y)E M[y(y)y]jly]
YI Y? p2 (dy2)P 1 (dY) 2 1 2 1

" Y2 -,
(32)

Furthermore, condition (i) can be rewritten as

2 1 2 12- 2 1 -*
A I+- D21 D22 D21 (K+K) - DI2D21PI1 1 - D21DI2Pl I > 0 (33)

where I: F -F is the identity operator, and K: r -1> is defined by

(1l)2 [ Y2 [2 Y

(Ky)(yl) = gl (y 1 )E[g 2 (Y 2 )E [y(y)1Y2 lyl] (34)

We now summarize these results in the following proposition:

Proposition 3. Under Conditions (1) and (2), the decision problem with multiple

probability measures admits a Stackelberg equilibrium solution if, and only if,

A is nonnegative definite and (31) admits a solution in F1. 0

Equation (31) will, in general, not admit a closed-form solution, even

if all random variables are jointly Gaussian distributed (see §5.3); therefore,

we will have to resort to numerical computations which will involve a recursion of

some type. Hence, in analyzing the conditions of existence of a solution to (31)

we may also require that such a numerical scheme be globally convergent (or stable).

One appealing scheme whereby a unique solution to (31) [or, equivalently, (30)] can

be obtained is the recursion

(k)() = :(k-1))(
1(y) = (Y (k- 1) + (yl) , k=l,2,... (35)

¥(0) (k) chseA s".,
where y is chosen as an arbitrary element of F If the limit lim ¥(k) A .

exists in l, for all such initial choices, then y will necessarily constitute a

solution to (31). A sufficient condition for this readily follows from

Lemma B.1, which we give below as Prop. 4.
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Proposition 4. In addition to the conditions of Prop. 3, assume that there exists

a scalar P, 0<o<i, such that

r(Z) < p (36)

where r(Z) is the spectral radius of B. Then, the decision problem admits a

unique Stackelberg equilibrium solution (yS,T 2 [ys)),where ysEr1 is the limit of

the iterative scheme (35), and T2 is the affine operator (22). 0

We now further elaborate on (36), so as to bring it to a form which

separates out the contributions from the deterministic and probabilistic

components of the problem. [Here, we are seeking sufficient conditions which

would constitute the counterpart of (20) in this context]. Towards

this end, let us first note that using (34 ) in (25a):

/'i"1 2 -- 2 1 - 2 1 2
r(2) = r(DI2D21PI1i + D211D12Pill D21D22D21K) (37)

and utilizing the inequality relationship between the spectral radius and norm

of an operator (see Appendix A, Lemma A.1) this can be bounded from aboveby

1 2 2 1-* 2 1 2
< <DI2D21PI II + D 21D12 PI11- D21D22D21K>> I1

where << >> is the operator norm as defined in (17a). Using the standard
1

(triangle inequality) property of norms, this can further be bounded from above

by

1Dj 2 - 2 i-* - 2 1 2 ->

D D P i+ DDP >> « DK12D21P 11 21D1211 > 1 21D22D21 1

Now since both DDI D and K map a Hilbert space (F1) into itself, using the

2 122 211

norm inequality for products of linear operators, we further have

* * ,*
1 _ .o 1 -* 2 1 2

D-V P + D- DL P" >> + -<D r, D >> «K- ) 1 221 2112111 212221

r(D1 D2 -- 2 I -* 1 2 * 1/2D12 21PI + D21 D1 2P F I + r(DID22 021 ) [r(K K)]

A
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where the equality follows because (i) the spectral radius and norm of a

self-adjoint linear operator are equal [13,p.5141, (ii) norm of a "non-self-adjoint"

*linear operator K is equal to the square root of the spectral radius of the

self-adjoint operator K K (see Appendix A, Lemma A.1). Finally, using the result

of Lemma A.2 (Appendix A), the latter is bounded from above by

i 2 D2 D 1/2 * - /2 r(D2 1 D 2 [r(K ]1/2r(1) < 12211 /2 [(e P  ] 1/ (212 (38)

Now, let us assume the following:

Condition (3). There exist four positive scalars plP 2,P3 ,p4  satisfying

2 PlP2 + P304 <1 (39)

such that

.*- * * -
1 2 2 1 2 2 1 2

r(D12D21D21D12 -- ( ,1) r(D 21D22D21)P 3  (40a)

(p2)
2  * (p4) 2  (40b)

Then, we have

Theorem 2. Under 7ondit'ons (1)-(2) of §2 and Ccndition" (3) given above, the

decision problem admits a unique Stackelberg equilibrium solution (yS,T,[yS]) ,

where y E7 is the limit of the iterative scheme (35), and T2 is given by (22).

The result follows from Prop. 4 and the discussion and derivation

that leads to Condition (3), provided we show that the given three conditions

subsume (33), i.e. nonnegativity of operator A. We now verify that Cd:o z.on (.)

in fact implies that A is a strongly positive operator. First note that A is

self-adjoint, because K commutes with D2 D 2D 2. Hence, using Lemma A.3
21 22 21'

(Appendix A), we can write down the inequality

1 2 1 2 *1 - 1 *"- 1 2 1 2 (K+K)) + r(D Dl P + D21D P2- r(D2 1D2 2D2 1 12 1 1 2 12 11
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.9 Then, using the line of arguments that led to (38) from (37), and the spectral radius

inequality for the product of two self-adjoint operators, we obtain the bound

1 212 1 2 2 1 1/2 -* - 1/2r(A-I) < r(D 2 1 D2 2 D2 1 ) r+K)+ r[(DIDDD 1 I)] [r (Pi iPl )]
i r1t22K2 12 2121 2 l1 ll

-<,P3 r(K+K + p 22 p3  ) +

But note that

r(K+() sup [<-y,Q{+ )Y>11<Y,Y>1] 2 sup [<y,Ky> 1 HY,Y>]yeP I~1

and since, from the Cauchy-Schwarz inequality of inner products,• %i

" <YKy>112 < V<Y,Y>l I A<KYK>11

i * 1/2

we have r(K+Kf) < 2 sup [<Ky,Ky>ll<y,y>I
1

YEr -"

= 2 sup [<y,K* K>1 <yy>/ = 2[r(KK)]11 < 2p

yEr 1  42

Thus, r(A-I) < 3p4 + <i,

implying that the spectrum of the self-adjoint operator A-I is uniformly in

the unit sphere. Hence, A is strongly positive.

For the special class of strictly convex team problems (cf. §3) with
-4.

multiple probability measures, several simplifications can be made. In this case

eq. (31) simplifies to

,(YI) = {IEDt{ [E2[y(y 1 )ly2 ] + g1 (y)E 2 [g 2 (yl) {E[Y(Y)iy 2 ]

E" [y(yl)[yl]} fy 1]} + F1 El[xjY1 ] (41)1 2 1 1

1 2 F2g (yl)E I[g (y) {E[x Y - E [xIY 2
] } fY I + D 1 E2

and in Jri :ion (3)' inequalities (40a) are replaced by the single inequality

by the sige"nqult

Ave
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r D D 1 i/2 1 1
[r(DDIDID =<<D D >>= p < pl=P

12 12 1212 12 121 1 3

where can be taken to be less than one. Hence, (39) reads

(2p 2 +p4 ) < 1/ p (42)

We now summarize these results as a corollary to Thm. 2:

Corollary 3. Under Conditions (.4,'-(2) of §2, and (42) given above, the strictly

convex quadratic team problem, with multiple probability measures and asymmetric

mode of decision making, admits a unique Stackelberg equilibrium solution

(',T 2 [ys]),where y
5EF is the limit of the iterative scheme (35) with

D I 1 * Mg )E 2[g2 (y 2)E2[¥.-
(Ef)(Y1 ) =D 2DI2 [(lI 1 I + P12)y(Yl) - (Y!1 1 2  Y)YY 2 ]Yl]]

'

and T? is given by (22). 0

Remark 3. When the original problem is a Stackelberg game, but the probability

measures are identical, a study of the original condition (36) reveals the inequality

1 2 2 1 2 1 2
r() < r(DD +D D -D D D < 1.

121 21 12 21 22 21

This is the existence condition associated with the standard stochastic Stackelberg

game, which corroborates the earlier result obtained in [25].

We now conclude this section by presenting the counterpart of Corollary 
2

in the present context, which provides a set of (simpler) sufficient 
conditions for

(40b) to be satisfied:

Corollary 4. For a given pair ( 2,o4), the first and second inequalities of (40b)

are satisfied if, respectively,

g (l g(n)P (d2I; = yl) (43a)

I ,g2(_I)( 2 Pyn= 1 2
and g (v 1) (d- = )  g(b)P

2  (dbY (43b)
Yo Y2 yl YI Y y °  "€

are uniformly bounded from above 
b (22 and (o,)2,

2, ,



* 22

Furthermore, if probability densities exist (with respect to the Lebesgue

measure), these conditions can be expressed in terms of the corresponding probabilit

density functions p ()as follows:

2 1
pY1 (y1 ) f P Y2 (T p 2 (ny n< 2 (44a)

1 2

22
p 1 (y1  p1 (rO)2 2 (j d b)2

pl 2  2r) Pyly2Y 2
('Iy yl )dr Y1 1 ()P jy(bln)db< (04)

1l1Y (44b)

Zr 'sOf For (43a)-(43b) see Appendix C, (44a)-(44b), however, follow readily from

(4a-(43b).

('3a)
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5. Jointly Gaussian Distributions

In decision and control theory, one appealing class of probability

distributions is the Gaussian distribution, because it leads to tractable problems

admitting, in most cases, closed-form solutions. Indeed when the probability

measures of the two DM's are identical and Gaussian, equilibrium solutions have

been shown to be affine functions of the observations for (i) quadratic stochastic

team problems defined on Euclidean spaces [7], (ii) quadratic stochastic Nash games

on Euclidean spaces [8], (iii) quadratic continuous-time stochastic team problems

[9], (iv) quadratic stochastic Stackelberg games on Euclidean spaces [25], and (v)

quadratic continuous-time stochastic Stackelberg games [26]. In this section, we

investigate possible extensions of this appealing structural feature to the case

when discrepancies exist between the subjective Gaussian distributions, as

reflected in the covariances of the random vectors (yl,y2 ). We could also have

included discrepancies in the perceptions of the mean values, but such a more

general treatment does not contribute substantially to the qualitative nature of

the results obtained in the sequel and besides it makes the expressions notationally

cumbersome. Interested reader could find relevant expressions for the nonzero mean

case in [27].

We first introduce notation and terminology, and delineate Conditions (1)

and (2) of t2 (§5.1). Then, we study the case of symmetric mode of decision making

in §5.2,and show that the unique equilibrium solution of Thm. 1 is linear. Finally

in §5.3 we treat the case of asymmetric mode of decision making, and show that (in

contradistinction with the result of §5.2) the unique Stackelberg solution of Thm. 2

is generically nonlinear.

1.. ilcratiot and Terninocy,
Let (x,Yly) be zero-mean Gaussian random vectors under both P and P2

with

9,
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covariance (x,y1,y2) =cov(x,y) = = : > 0 under P. (45b) -

These probability distributions clearly satisfy the absolute continuity condition

(Condition (1)) of Thins. 1 and 2. Furthermore, since

g M~ dt /et Ej)exp {-! (4Wa

yi

W .A -l -Ei-l j (46b)

the uniform bouadedness condition (Condition (2)) of Thins. 1 and 2 is satisfied

whenever

W. > 0 , i=1,2. (47)

After making these observations, let us ir.!:roduce the additional notation

1.-

N. I M - Mj~jBjMY E 1 jii (48a)
1 = ii 3 ji y.

B. M . +W. (48b)
I = .3. .3

Mi -l7

M/' z E i ) (48c)

M21  M22i y2y1

q det E .det J /Met Z' det B. det Z l/ (48d)

in terms of which we evaluate (21a) [using standard properties of Gaussian

distributions] to be

= q ex '.- v~v .(49)

-. 3 *12 'i i-f
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We are now in a position to specialize the results of Thms. 1 and 2 to Gaussian

distributions and obtain some explicit results.

5.2. Symnetric Mode of Decision Making

In order to apply Thm. I to the Gaussian decision problem formulated above,

we first explore the satisfaction of various conditions given there. We have already

shown above that Condition (1) is always satisfied and Condition (2) is satisfied

whenever Wi > 0. For the remaining condition we study inequalities (20b). The second

i
of these is satisfied, for a given p2 , if (using (21a)) expression (49) is uniformly

bounded in yi, and this bound is no greater than p2" For uniform boundedness of (49)

it is necessary and sufficient that

N> 0 (50a)

under which the latter condition becomes

i i 2
q < (P)

Hence going back to (20a), the condition

11D DLI11 < 1/q for at least one i=1,2, (50b)
UJi 2.

becomes sufficient for (19). We are now in a position to state and prove the

following theorem:

Theorem 3. Let (47) hold for i=1,2, and (50a)-(50b) hold for at least one i. Then,

the quadratic Gaussian decision problem formulated in this section admits a unique

stable Nash equilibrium solution (yi,y2), where u i  Y'(y) are linear in and are

giv by

y°(y i ) = LiYi  i=1,2. (51)

Here, L-- Ui are bounded linear operators, constituting the unique

solution to the linear operator equations

L P Di J L. j  Zj - Y v.

ijji i YiYj Yj Yji "i (52)

i jvj 'j -I1 i  i  iMi .i - .
-x v V. . i=1,2.iv 1'j j'y y YjYiYiY FixiiYi=0 y ,• ..
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Proof. The existence and uniqueness of the solution follows from Thm. 1, Corollary 2,-

and the discussion that precedes the statement of the theorem. The linearity of this

unique solution, on the other hand, follows by noting that if the pair (yYI2O),O)) is

taken to be linear in (yl,y2) in (14), all the terms of the sequence are linear, and

hence the limit (which exists as already proven) is linear. Hence, choosing Yi as in
m.

(51), where L.: JR i- Ui are bounded linear operators, substituting this into (14)
1M mi

and requiring it to hold for all yi ER (since all probability measures are Gaussian),.

leads to the unique relations (52). 0

Remark 4. Thm. 3 above extends the result of Thm. 2 of [8] on quadratic Gaussian

games to the case when a common probability space does not exist and the decision

spaces are not necessarily finite dimensional, and shows that the appealing linear

structure prevails when there exists a discrepancy in the perceptions of the two DM's

of the underlying probability measures. The existence and uniqueness conditions here

are, however, more restrictive than those of [8], and also involve the probabilistic

structure (see (50b)). Expression (21a) in the most general case (and (49) for the

special Gaussian case) is not uniformly (in yi ) bounded by 1, unless g =g(y )=l

a.e. P and Pj (which corresponds to the case of equivalent probability measures),a~.Yi YJ corsod

since R-N derivatives (if different from 1) will be both smaller and larger than unity

on sets of nonzero measure. This then implies, in view of (47), and from (49), that

q > 1, i=1,2, with the inequality being strict if P is not equivalent to Pi for at
Yi Yi

least one i=1,2, j#i. In such a case, even team problems, a stable equilibrium soluti,

may not exist, particularly if 1/q < IIDjD iI < 1 for at least one i=1,22 ji

This indicates, in general, the presence of a strong coupling between probabilistic and

deterministic elements of the problem in terms of existence conditions. However, if

the discrepancy between perceptions of the DM's on the probability measures (measured

in terms of R-N derivatives) is sufficiently small, one would expect qi to be sufficien

close to unity, which ensures satisfaction of condition (50c) for a fairly general

.. "N -
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class of quadratic strictly convex Gaussian team problems (since, UD D ii = ODj D . =
ij Ji i ji ij j V

p < 1, for such team problems). For further discussion on this point we refer the

reader to [10].

In the statement of Thm. 1, the condition (47) places some severe restrictions

on the second moments of the underlying distributions (in case a discrepancy exists),

which may however be relaxed if we are willing to consider equilibrium policies in a

more restricted space. More specifically, satisfaction of (47) ensures that regardless

of what initial set of policies the DM's start the infinite recursion (15) with, every

element of this series is well-defined, and under (50a)-(50b) it will converge to a

unique limit which is linear; in other words, even if the DM's start with nonlinear

" policies, the end result will be a linear equilibrium solution. The condition (47) is

restrictive, because we require (without imposing any constraints on the policy spaces)

the series generated by (15) to be well-defined even with nonlinear starting conditions.

However, if we restrict the team agents to linear policies from the outset, under

Gaussian distributions (and following the argument used in the proof of Thm. 1) elements

- of the series (15) will be well-defined (without requiring (47)) and will converge to

the equilibrium solution provided that (50a)-(50b) hold for at least one i=1,2. This

line of reasoning then leads to the following result which we give without a proof.

a
Proposition 5. Let Fa be the class of all linear policies in the form (51), withm.

i Ui a a,
L: IR U a bounded linear operator, i=1,2. On rI x F 2 the statement of Thm. 1

is valid even if (47) does not hold true.

We now interpret these results in the context of two examples one of which

is a scalar team problem and the other one is a continuous-time team problem, both

*- with multiple subjective Gaussian probabilities.

r7, Consider a family of scalar Gaussian team problems, with.

D1  D 2  1 2 1 2 nm= 2 l22 11 D12 D 2 1  1, F 1 f! 21 1, and 1 1'2 2' ad2

A ~ 2(53)

"- - D = ,=v , = F 2

v / Y "
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To investigate the applicability of Thm. 1 to this class of problems, let us first

observe that condition (.47) is satisfied if, and only if, both

0<P<i , O<n<l (54)

For condition (50a), we evaluate N i and require it to be nonnegative for either i=l, ..

or i=2:

* NI = (ab-c 2 )(l-p ) [p 2a-c -(l-p)ab]/{a[2 a 2-(l-v±)(Iiab-c 2 )] > 0 (55a)

or

N 2 = (nab-e 2 )(1-n)[ nb 2-e 2-(l-n)ab]/{b[n 2b 2-(l-'n ) (nab-e 2 )]} > 0 (55b)

Finally, condition (50b) dictates either

iamId12< [12a 2 (l1-)(pab-c
2 )] (56a)

, or

2 12< 2 2 2
rib 2Id< [r2 b -(l-n)(nab-e2)] (56b)

provided that the terms on the right-hand-side are positive (if not, then the

inequalities will accordingly change direction).

The set of values for a,b,c,e,p,n that satisfy (54)-(56) is clearly not

empty. To gain some further insight into these conditions, let us consider

the class of team decision problems in which the discrepancies between the DMs'

perceptions of the variances of different Gaussian random variables is relatively

small, that is there exist sufficiently small E1>0 and E2>0 such that 1=1-E1.

' n=l-c2 , and furthermore e-c, and Ic! is considerably smaller than both a and

b. Note that, when El=C2 =0, conditions (54)-(56) are all satisfied (note that

JdJ<l because of strict convexity of the objective functional) regardless of

the relative magnitudes of e and c. Hence, when the discrepancy is only in the

perceptions of the correlation between yl and Y2' the scalar quadratic Gaussian

team problem always admits a stable equilibrium solution. Now, for nonzero,

but positive,and sufficiently small Ei' the dominating term in (55a) is

I} ,,, .- ,° , . . , , . ., . ,. . ..-..--.----. .. ,.,..... ........ . . .. . .. . .
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NI  Cl(ab-c )(pa2 -C )/P a

which is positive, in view of (53) and the initial hypothesis that Ia/c>>l.

Likewise, D2 is positive whenever 0< 2<<1 and Ib/eI>>l. Furthermore, given

a d, 0<d<l, we can always find e and E 2 both in (0,1), so that both (56a)

U and (56b) are satisfied whenever IdI<d. Hence, the conclusion is that when the

deviations of the perceptions of the DM's from the common Gaussian probability

measures are incremental (and satisfying (54)), the linear equilibrium solution

of the Gaussian scalar team problem retains its stability property (but, of course,

at a different (possibly close, in norm) equilibrium point). '

ExampLe 2. As a second illustration of Thm. 1, for infinite-dimensional decision spaces,

we consider here a class of stochastic Gaussian team problems defined in continuous time..'

1More specifically, let U =U 2=(0,T), the Hilbert space of all scalar-valued Lebesgue-

integrable functions on the bounded interval [0,T], endowed with the standard inner

product fu(t)v(t)dt, for u,vEC 2. Furthermore, let Y and Y2 = R, and the Gaussian

Le D 2 1 ""
statistics have zero mean, and variances be as given in (53). Let = = I,

1 2*

the identity operator on £2 and D = D21 be the Fredholm operator

1 12 u f K(t,s)u(.s)ds (57)
0

where K(t,s) is a continuous kernel on O<t,s<T, and finally let F =f

i=1,2, which are continuous functions on [0,T].

Now, conditions (47a) and (50a) depend only on the probabilistic structure,

and are therefore again given by (54) and (55), respectively. For (50b), however, we

have to obtain the counterpart of (56), by simply replacing I with the norm of the
i i*

h1 1111 T
operators D D and D D respectively. Since D u = r K(s t)u(s)ds,

12 12 12 112'1 0

1 1the self-adjoint operator D, D is given by
.12



30

* TT T -

D D u = ff K(t,T)K(s,i)u(s)ds dT = f K(t,s)u(s)ds,
1212 0 0

T a_

where Z(ts) = f K(t,T)K(s,T) di. (58a)
0

TT
fLet X fIK(t,s)I dtds} . (58b)

00

* T T
Then, 11D 2Dl u = f I f K(t,s)u(s)dsl dt < f [f]i(ts) T2ds][f2u(s)2dsdt

0 0 0 0 0

where the second step follows from the Cauchy-Schwarz inequality. Hence,

11 D1 D1 11 < X12 12 1- '"

1 1
and because of symmetry D is also bounded in norm by the same quantity.

This then leads to the following counterpart of (56): A sufficient condition

for satisfaction of (50b) is either

- 2 [ 2 2 (l)( 2)1 (59a) 

or

nb2X < L [n2b 2-(l-n) (nab-e2) ] (59b)

.. provided that the terms on the right-hand-side are positive, where X is defined

by (58a)-(58b).

Hence, under (54) and either (55a) and (59a) or (55b) and (59b),

*i the continuous-time static decision problem for,ulated above admits a unique

stable equilibrium solution, and this solution is given by (from Thm. 3):

•2
0y4(t,yv) = k. (t)y. , i=1,2, (60)

where k.(t) are continuous functions on [0,T], satisfying

• . . . . . . . . - - - -

. -
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T T ..T,
kl(t) - (-) f K(t,s)kl(S)ds _ elab) f K(ts)fl(S)ds - (a /a)fl (t)-O (61a)

Tb0 1xy 2  0 1xyl1 1(6a

T T

k2 (t) - () f K(st)k2 (s)ds - (a cl/ ) K(s,t)f 2 (s)ds - (a2  /b)f2 (t)=O. (61b)
01 0 xY2

Note that k.(t) above stands for operator L in (52), and we have already shown

I

that a unique solution to both (61a) and (61b) exist in £2 [0,T], under (54) and

either (55a) and (59a) or (55b) and (59b), and this solution is also continuous.

Finally, if our interest lies only in the existence of a unique linear

equilibrium solution (not necessarily stable), the required condition is unique

solvability of the integral equations (61a)-(61b), for which a sufficient condition

is [6]

(ec/ab) X < 1

where is defined by (58b). 0

5.3. Asymmetric Mode of Decision Making

To obtain the counterpart of the results of §5.2 under the asymmetric mode

of decision making, we first investigate the possibility for the unique solution of

Thm. 2 to be linear. Towards this end we first observe that the decision problem will

admit a unique linear solution if, and only if, equation (31) is satisfied by the

decision rule

y(yl) = Ay I  (62)

m I

for some linear bounded operator A: R -U. Hence, using (31), A should be

the solution of (by pulling A out of the conditional expectations)

1 2 1E2 2 * 2 E2 2 1

AVl D1 2D21 AE [E l + D2D2 Ag (y )E [g (y)E [YlI y2 11y l]
12 2 1 2 2 2 ,

S21 22D 1Ag (vl)E[g-(y,2
) E y  

2
, 2(63a)

,12 1 1 E2 1
+ F E [ +D 2 1 g +yl) [g (y) [xY2]Yl ..

1 m

2 2 F 2  2 1 2 22IyI V-
D 21 D22 F2g (YI)E [g (Y2)E[xY 2 ]IY1  -1 2[

: ' .: '..' : . . -- .'... K r • 2" "' ', " % ''W .-, -". ' I'''-. .
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Since the random variables are jointly Gaussian under both measures,

Eiyky SY kki i,k,Z=1,2 (63b)

E i,2.1,2 I (63c)

i iz

for some matrices S and S In view of this, (63a) can be rewritten as

"

1 2 21 1 2 12 2* 2 12 2
Ay (D D AS S + FS01 D FS S )y + [D D AS D D D AS

1 12 21 12 21 1 01 12 2 02 21 1 21 12 12 21 22 2112 (64.

+2 F1S 1  _ D2 D1 F252 1g1 (y )E2 [g2 (y
D21F2S62 - 21D22F2S02] 12Y2l] "

This then leads to the following Proposition:

1 2Proposition 6. Let (47) and Condition (3) be satisfied, and either P #P or

1 2o
P # p . Then, the quadratic Gaussian decision problem with asymmetric mode of ')
Y2 Y2

decision making admits a linear (Stackelberg) equilibrium solution if, and only if,
m 1

(i) there exists a bounded linear operator A: IR U1 satisfying

A D1 2 2 S 11 1 22 1
12D21 12S21 1S01 1220221 (65a)

and (ii) this solution also satisfies

* * * * * 2

D2  1 A 1  D2 D1  2 A 2  + 2  1 1 2 D1  2 2(6)
21 12 12 21 22 21 12 2 1F2S 02  21 22 2S02

Proof. Since the "if" part is obvious in view of Thm. 2, we verify only

the "only if" part of the proposition. [In what follows we adopt the notation

S > 0 to imply that the nonnegative definite matrix S has at least one

positive eigenvalue.] The proof proceeds by showing for three exclusive

1 2 2
(and exhaustive) cases that f(y) g (Y)E~Ig2(y2)ylyl1 is a nonlinear function of ,

2 1 1 2(a) P , andP #P
Y2 - Yl l

Here, 2()=, and g (y)=c exp y- YWy} , where WI > 0, and
-11 2211 1

C >l 0 is a constant. Hence, f(vl ) g 2 1 1 which is nonlinear since W 0.-
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(b) P2 OPl 1 p =P2

Y2 Y2 l l

Here, g (y)=l, and (y=c 2 exp {- - Y'W2Y2}, where W > 0, and c > 0

is a constant. In this case, f can be evaluated to be

1. 2

f(y1 ) = c(V+W2)- VSy exp {- i yByl}

2 2 2
where V = E {(y2  S2 1yl)(y 2 - S2 1 yl)1 }

2= Sv 2  2, -12

2B 21 21 2  21  ,

and c is a constant. Since W2  0 0, B has at least one positive eigenvalue,

and hence f(yl) is again nonlinear in yl"

2 1 1 2
(c) P #P and P #P

Y 2 Y2 Yl Yl

In this case, following the same lines as above, we find

f(y1 ) c(V+W2)- VS2 y exp {- y(B+W)y1 2 S21Y 1  2 BW) I

which is nonlinear since both B > 0, W 1 0.

Hence, in view of the preceding analysis, a necessary condition

for existence of a solution to (64) is that the last term should vanish

(i.e. (65b)) for an A that solves (65a).

-- Remark 5. A sufficient condition for (65a) to admit a unique solution in the Banach
m 
1

space of linear bounded operators mapping X into UI is

1 22 1 -S211
r(D D 21D 21D ) Tr 'S S

12S21S21S21 21 12
which is clearly satisfied under Condition (3).

The conditions of Prop. 6 are clearly non-void; because, given the unique

1 2 1 2
solution of (65a), it may be possible to find F2 , F2  S and S2 so that (65b) is

2' 2' 02 02

satisfied. However, it should also be clear that satisfaction of (65b) places some

severe restrictions on the parameters of the problem, which in general will not be met.

Hence, it is fair to say that, if either p1 OP2 or P 1 , generically the problem

Yl Yl Y2 Y2
does not admit a linear equilibrium solution, even if it is a team problem; that is:
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Corollary 5. If either P 1P2 or P 1P2 (or both), the quadratic Gaussian decision :-
Yl Yl Y2 Y2

problem does not admit (generically) a linear Stackelberg equilibrium solution. The

unique solution, which exists under (47) and Condition (3), is nonlinear.

4 The conditions of the preceding Corollary involve only the marginal

distributions of y 1 and Y2 ; in the compliment of these conditions we can derive the

-M
* following linear solution:

1 =2Proposition 7. For the quadratic Gaussian decision problem, let both P =P and

P1 =P2 (but not necessarily P1 =P , and even P 2 =P2Y1  Y2  ylY2 x ylY2x yly2 ylY2). Then, if

1 2 2 1 1/2 2 1 2 1/2< (66)21r(DI2D2 1D2 1D1 2)] + [r(D 2 1D2 2D2 1 )i

the problem admits a unique Stackelberg equilibrium solution for DMI (the

leader) which is linear in y

Y 1(y) AyI  (67a)

where A: R _- U is the unique bounded linear operator solving

1 2 i 1 22 Ay = (D2D2AS2S + D D2ASIS 2 - D 1 D AS 122 S1i**I 2 2 21 2 1 y2 D2112 21 12 2 11 22122 2112 21 1 01 12 202 21
2 11 2 2*1 22 2 m (67b)

+ D21 F2 S02 S21 - D21 D22F 2 S02 S2 1)y y 1 ER

and Sk are defined by (31b)-(31c), and S i is defined by Ei[xjyi ] = S0iYi ,

~roof . When p =p2 andP p p gl()g2y)

PW 1 yP 2 a y 2 ' (y)=g (y )=l and hence Conditions (1) and (2) of

Thm. 2 are always satisfied, and in Condition (3), 2=04 =1. Then, (66) is the counter-%

part of (39), and hence existence and uniqueness follow from Thm. 2. Linearity, on the

other hand, follows by noting that if we start iteration (35) with y(0)=0, since

1 2
g y_)=g (Y )=l every term will be linear in (see also (64)), and hence the limit

(which exists by Thm. 2) will be linear. Then, substituting y )=Av1 in (31), we

obtain (67b), by simply letting g1 (yl)=g2 (y,)=l in (64). E

4.9

i " -0
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When there is a discrepancy between the DM's perceptions of the variances

of either y1 or y2 9 Prop. 7 will not hold, and the problem will admit (generically) a

nonlinear equilibrium solution, as proven earlier in Prop. 6 and Corollary 5. In this

case, an explicit closed-form solution cannot be obtained; however, an approximate

solution can be derived by using the iteration (35) which, for the Gaussian problem,

becomes

(k+l) 1 2 1 2 (k) 2 1 1
-DI 2D21 E [E 2 y  (Yl)1 Y]jYl] + D2 1 D 2g (y

l)1 2 1 2 2 12 1

SE[g 2(y)E l[y (yl)1y2IlylI - D21D22D21g l(y)
2 1 2 1 21 22 21 1

(68)
2 2 2 (k 11 1 2 2 1E [g (y2)E2[yk) (y )1y2] Yl] + (F 1 S0 1 + D 2S0S2)Y

2 1 1 2 1 2 2 1 2 2+ (D2 1F2S0 2 - D 21D 22F2S2)g(y1)E [g (y2)y2lYl]02i 21i222 12 1

If we start this iteration with y(O)(yl)=O, or any linear function of y1 , at

(k)
* every iteration we obtain linear combinations of terms of the type A yI and

(y exp - 1 yv(k) where A(k) and B are linear operators, and

U () a m2x 1 Bk

(k)V >0 is an mxm matrix. Since this is a successive approximation technique

under C# :n'zi.< (3), even stopping the iteration after a finite number of terms

will provide a solution sufficiently close to the unique optimum. Hence, generically,

K a suboptimal policy for DM1, which is sufficiently close to the unique solution of

(31), will be of the form

7 ='A(N)yl ()l 1
(y A + E B V exp - V )

2<N

where N is a sufficiently large integer (related to the number of iterations

'"" ake in(68), nd (N) B(Z) VM
taken in (68). , , V are generated via the iteration (68). Note

that as N- this solution will uniformly converge to the unique optimum.

Yet another suboptimal solution can be obtained bv restricting DMI's

policies, at the outset, to linear functions of y, i.e. to the form (62)

where A is a variable linear operator. DM12's response to any such policy will

J.. - "
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also be linear (in y2), thus making T. in (10) a linear operator. Then, the

problem faced by DM1 is minimization of (11), with y(yl)-Ayl, over all linear

bounded operators A. The solution of this minimization problem will provide

DM1 with a linear policy that is (in general) inferior to the limiting solution of

(68), unless, of course, g1 (y1)g
2 (y2)=l in which case the two solutions will

be the same (satisfying (67b)). We do not pursue here the details of the

derivation of the best linear solution for the general case (as outlined

above).

Furthermore, it is possible to work out the various conditions for the specii.

cases of the scalar and continuous-time team problems (formulated as in Examples 1 and'

2) and write down the equilibrium solution explicitly whenever it is linear. Such an

analysis would routinely follow the lines of the discussion of Examples 1 and 2, and ?:\

hence will not be included here mainly because of space limitations.

PI

-4 "1

°1-
° 

.

'" .... " " _ . . . .. .., . .. :.. .: .. v .: .:T. .- .- 1

-' .-" , -.. ,--.. --.j. .-".- .-" " - i--'- " " " "a
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6. Discussion of Possible Extensions, and Concluding Remarks

In the preceding sections, we have developed an equilibrium theory for two-

person quadratic decision problems with static information patterns, wherein the

decision makers (DM's) do not necessarily have the same perception of the underlying

probability space; that is, our formulation allows for discrepancies in the way

different DM's perceive the probability space. As indicated earlier, when such

discrepancies exist, even team problems have to be analyzed in the framework of

nonzero-sum stochastic games, and in such a framework the Nash solution concept is the

K: most suitable equilibrium concept if the DM's occupy symmetric (non-hierarchical)

positions in the decision process, and the Stackelberg solution concept becomes more

meaningful if there is a hierarcy in decision making.

Section 3 of the paper has provided a set of sufficient conditions for

existence and uniqueness of Nash equilibrium in the case of symmetric mode of decision

making, with the additional feature that it be stable. This is an appealing feature

of the solution because, in order to arrive at equilibrium (as a consequence of an

infinite number of response iterations), each DM does not have to know the subjective

3 probability measures perceived by the other DM, but has to know only the policy adopted

by the other DM at the most recent step of the iteration.

-4 In Section 4 we have presented a counterpart of the results of §3 under the

asymmetric mode of decision making. The conditions derived ensure that the equilibrium

policy of the leader can be obtained as the limit of an infinite sequence which

involves conditional expectations under two different probability measures. This

sequence[(35),(27)] is structurally different from its counterpart in §3 (see 14),

even for team problems, and it contains R-N derivatives of the two probability

measures as multiplying factors (which are absent in (14)).

In Section 5 we have shown that when the underlying probability distributions

belong to a Gaussian class, the Nash equilibrium solution will be linear (affine, if

mean values are nonzero) in the available static measurements, with the gain operator

.... .. .. ...
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satisfying a Lyapunov-type operator equation (cf. Thm. 3). This solution and the

associated existence conditions have been studied further in the context of two

examples which ireolve scalar and continuous-time stochastic team problems with

multiple probability models. In developing a counterpart of Thm. 3 for asymmetric

mode of decision making, we have arrived at a seemingly surprising (unexpected) result"

the unique Stackelberg equilibrium solution being generically nonlinear in the

measurements (even under Gaussian multiple probability measures). This constitutes "[

the first unique nonlinear solution reported in the literature for a quadratic Gaussian

static game or team problem! It should be noted that we have not given a closed-form

expression for this nonlinear solution, but have instead provided a recursive scheme

which generates admissible policies that come arbitrarily close to the optimum solutioNT

Several extensions of the results presented in this paper seem to be possibl:'

Firstly, we should note that the general Hilbert-space framework adopted in this paper

and the general solutions presented for the Gaussian problems in Section 5 (Thms. 3

and 4) apply to other models also, such as the ones similar to the continuous-time team-

problem treated in [9] and the Stackelberg problem of [26], but with the DM's having

different probability models. It is expected that some explicit results (closed-form

* solutions) can also be obtained in these cases, but this point has not been pursued in

this paper and is left for future research.

Another possible extension of the results of this paper would be to the class

of problems in which the random state of nature (i.e. x) as well as the measurements

(yi) are stochastic processes. The general theories of Sections 3 and 4 could easily .",

be extended so as to encompass this class of problems also, provided that the problem

is set up under the right mathematical assumptions. In particular, if the random

Reference [12] also reports on existence of nonlinear (Nash) solutions for
quadratic Gaussian nonzero-sum games, but there the nonlinear solution is one of many
solutions one of which is linear, and is due to nonunique intersection of reaction
functions (which disappears under appropriate conditions).

%
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variables are taken to be Hilbert space valued weak random variables, with the inner

product satisfying some continuity and boundedness conditions [11], Thms. 1-4 directly

apply to this more general class of decision problems, when interpreted in the right

framework. Furthermore, extensions to dynamic (multi-stage) problems is also possible,

by adopting the framework of (say) [8] for the linear-quadratic-Gaussian problem. Then,

the unique Nash equilibrium solution under the one-step-delay observation sharing

pattern can be obtained by basically following the approach of [8] and utilizing in the

recursive derivation Thm. 3 of this paper instead of Thm. 2 of [8]. Details of this

derivation are, however, rather involved, and will be reported elsewhere.

Regarding the Nash equilibrium solution, yet another possible extension would

be to multiple decision-maker problems with more than two (say, N) DM's. Even though

the definition of Nash equilibrium (cf. Def. 1) admits a natural (unique) extension to

such problems, that of stable equilibrium (cf. Def. 2) does not extend in a unique way.

One viable alternative is to assume that each DM reacts optimally to the set of most

recent policies of all the other DM's, which leads to a set of N relations similar to

(9). In this case, (12) will be replaced by N equations with the right-hand-side

expressions involving N-1 policies of different DM's. However, the line of reasoning

that took us from (13) to (14) does not have a counterpart if N>2, and in general it

is not possible to obtain N recursion relations each of which involves only one DM's

policies at consecutive stages. Then, the counterpart of (13) will have to be treated

-. as a "multi-valued" operator equation, in which context an existence and uniqueness

result will have to be established. This seems to be a challenging problem whose

solution requires somewhat different mathemati techniques than the ones employed in

this paper.

One source of motivation for the research reported in this paper has been

(as discussed in Section 1) the desire to investigate the sensitivity and robustness

of team-optimal solutions (in stochastic teams) to independent variations in the

perceptions of tne DM's of the underlying probability space (and, in particular, the
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probability measure). The analysis of this paper indeed provides a framework for "

such a study when the roles of the DM's are either symmetric or asymmetric, since an -

equilibrium theory has been established in both cases within an "c-neighborhood" of

the team-optimal solution. Some further work is needed in order to determine the

"satisfiability" of the several existence conditions obtained in the paper when the

region of interest is an e-neighborhood of a common probability space, and to further--

extend the analysis to an investigation of sensitivity and robustness properties of .-

team solutions (obtained under the stipulation of existence of a common underlying

probability space) in this c-neighborhood.

An aspect of the decision problem studied here, which is worth bringing forh,

is that the subjective probability measures perceived by each DM is fixed in advance

and the DM's do not attempt to change their subjective priors during the course of the)

decision process. Hence, in this sense, the problem treated here is categorically

different from the class of problems treated in [18I-[21), where the objective was fo.

the DM's to arrive at a common (consistent) set of probabilistic descriptions of the

unknown variables. In the symmetric mode, there is, however, an implicit learning ¢

process built in the recursive process that leads to the stable equilibrium decision

rules for each DM, since the DM's do not necessarily have access to each other's

* perception of the priors. IJ

Yet another aspect of the problem treated in this paper is that the general

formulation could be viewed as a multi-modeling in multiple-decision maker problems;

however, as opposed to the singular perturbations approach of [22]-[24], here the P.,

multi-modeling is in the probabilistic description of the decision problem, with each

DM having a different probabilistic model of the "rest of the world."

.a
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Appendix A

In this appendix we state a number of results concerning the spectral

.R radii of linear bounded operators.

Let A: r-r and B: r-r be two linear bounded operators where F is

a Hilbert space equipped with the inner product <'>. Then the spectral radius

'of A is defined by

r(A) lim sup [<<A i/k (A-l)
k-

where <<A>> is the norm of A, given by

<<A>> = sup [<Ay,Ay> / <yy>]/ 2  (A-2)
y r

p For self-adjoint operators there is an equivalence between the spectral

radius and norm of an operator; specifically, if A is self-adjoint,

r(A) = -A - sup{!<y,Ay>l/<y,y>} (A-3)

[see [13],p. 514]. However, for operators which are not self-adjoint, such

an equivalence does not exist, and one can only provide bounds on r(A):

Lemma A.i.

For any linear bounded operator A,

* 1/2

r(A) < <A>> = [r(A A)]

kk
P' C Since A belongs to a Banach algebra. --Ak>> - i<A>>k and hence

k)I/k -ir(A) < lim sup (!-A>, A>> :

Furthermore, 1A = sup [<',A 1/2

which s [r(A* 1/2*

which is [r(AA)1 bv (A-3) because A A is self-adjoint. ]
m q
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Lemma A.2. Let A and B be two linear bounded operators which commute. Then,

* * * * ]1/* *]1/2-
(i) r(AB + A B ) < 2[r(AA )r(B B)/ = 2[r(A*A)r(BB ) 1/

(ii) r(AB) < r(A)r(B)

Proof. (i) Since AB + A B is self-adjoint, using (A-3)

,** * **.1

r(AB + A B ) = sup{I<y,(AB + A B )y>j/<YY>} = 2 sup{l<Ay,B y>I/<yy>}-yNr Y r

where the equality has followed since A and B commute. Using Cauchy-Schwarz [31

inequality, this expression can be bounded from above by

< 2 sup I<AY4 Ay>[I
/ 2  *y,* 12

yEl' <y,Y>

and performing individual supremization we further obtain the bound

<2 sup 1/2 sup I<B*y,
B > 1/2

-- y[ <y[y> y <YyY>

* * * ] 1/2 .

=2 <<A>> <<B >> 2[r(A A)r(BB )]

where the last line has followed from Lemma A.1. Note that this expression can

be written in different ways because r(A A) = r(AA ) , r(BB ) = r(B B).

. (ii) Firstly note that

r(AB) = lim sup [<<(AB) k >>]1/k = lim sup [<<AkBk>>]1/k (*)
- k- k-*<o-

where the last equality has followed because A and B commute. Now, since A,B belong

to a Banach algebra, <<AkBk>> < <<A k>> <<B k>> for every k <=>
k! k<<B k k>>] /k  k lk k I

<=> [<<AkBk >>]/k < [<<Ak >> «B 1 [<<Ak >>1/k [<<Bk>>1 /k for every k

and taking lim sup of both sides, and using (*)
Ile [Ak> i/k [<k> 1/k:'

6r(AB) < lim sup {[<Ak>'/ [«B >] < r(A)r(B)

which proves the desired result.

424
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Lemma A.3. Let A and B be both self-adjoint. Then,

r(A + B) < r(A) + r(B)

Proof. This follows from (A-3) and the triangle inequality applied to norm <<.>>. 0

Appendix B

Proof of Theorem I

Let us first recall the following result from functional analysis (see, for

example [13, Chapter XIII, Theorem 3]).

Lemma B.1. Let $ be a linear bounded operator mapping aHilbert space r into itself,

and consider the equation

y = $Y + I (B-1)

* defined on T. Furthermore, consider the "successive approximation"

(k+l) = + sy(k) , k=0,1,... (B-2)

fl to the solution of (B-i). Then, the sequence generated by (B-2) converges to a

unique element of r, for any starting point y(O)Er, which is further a solution of

(B-1), if, and only if, the spectral radius of S is less than unity, i.e. there

exists a p, O<p<l, such that

r($) < p (B-3) ,

Now, applying this Lemma to our problem, we identify S with either $I or

(given by (16)), r with r1 or r2, the successive approximation (B-2) with (14), and

zondition (B-3) above with (19) for either i=l or 2. Then, the statement of

Thm. 1 (i) readily follows from the preceding Lemma, in view of Prop. 2.

Furthermore, since can be written as the product of two commuting

operators, using Lemma A.2(ii) we obtain

r r(D i < r 1 D)ri
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Under (20a) this can be bounded from above by p1P2 = P < 1, thereby ensuring (19). 9
On the other hand, since the spectral radius of a bounded linear operator is bounded---

from above by its norm [13], and that 11D51 = <<5>>. because Di also maps Ui into U.4

(in addition to being a mapping from r into itself), (20b) follows. This completese7

the proof of Thm. 1. 0

..

Appendix C

1. Proof of Corollary 2 (Section 3)

Here we verify that the second inequality of (20b) is implied by the

icondition that (21a) is uniformly bounded by 2 . Towards this end, we first have,

for each yEri, from the Cauchy-Buniakowski (Schwarz) inequality [3] applied to r. :t

liii y . .y iyy (d I n )  yj (d I )I 2i'
Y.fY 1mp <J Y 1y ly i Yiyi yl

f F (f y( )PJ (d 4n) f y(Q)PJ (d$fn)) PJ (dn)gJ(n)
Y YiY Yily i yW

-
°A.

where the last equality has involved a change of measures, using the R-N derivative

-g(n). Now, again using the Cauchy-Schwarz inequality, this expression can be boundE

from above by

j i
: .Y j i -y

f (y(), (y () P (d )gi( ) f P (dnJE)gJo)
Y. i yi Y

where the last equality has followed from Bayes Theorem. It now readily follows that.

under the condition of Corollary 2, the last expression is bounded from above by

I YI 2, thus proving the desired result for i=1,2.

2. Proof of Corollary 4 (Section 4)

The fact that uniform boundedness of (43a) (by (p2)2) implies the first

inequality of (40b) follows readily from the proof given above, since the spectral '

In the following we have abused the notation and have used 11.11i to stand also for :4
the natural norm derived from <.,.>i; but this should not create any source of
confusion.

_ , ,. , N . - .- :. . , .- ' ." - . .. ..'. . -%. .' - -



- ... . .. - - -. ,. , . -' ', ' .,. -. . -. .. .. .' . . . . -T

~45

radius of P is equal to the square of the norm of iqu Now, to verify that

uniform boundedness of (43b) implies the second inequality of (40b) we follow basically .•

the same line of reasoning, but the details of the proof are more involved. Towards

this end we first note that for each yEr I ,

1KY11I2 -1g 1(&) f P2 y(dlyl=)g 2 (n) f P2 (db Y2 n)(b)U 2

TF, P
2  2

"I Y2 2 (dnjy YI P 2  (db y2--n)y(b)12
Y2 y2[yl 1 ,~y 11y2  22

11 g 1(Fg 2 (n) f P2 (dbY 2=n)Y(b)ll 2

where the second equality follows from a change of measures, and the last bound

follows from the Cauchy-Schwarz inequality. It should be pointed out that

here we have abused the notation and have used II •11 to mean
2

m( = f (m(En),m( ,n)) P2  (d1xdn)}1/2
' Y 1 YiY2 YlY2

1 2

where m is a (ylY 2) - measurable random variable taking values in U1 ; hence, the

sub-index "2" indicates that the probability space is the one determined by

the subjective probability measure of DM2.

Now, the latter bound can further be bounded above by

< f f g (d~xdn) Y P  (db (y(b)'y(b))

Asince (i)

2 2(f P (dbly2 =T) y (b) f P (db y  (b ) )

Y y y2  y2  y 2-ii)Y, 1

< f P2 (dblY2=) (y(b) ,y(b))[:i$ -- Y Y Y2 =

Y 1Y
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2
' by the Cauchy-Schwarz inequality (because P2 is also a probability

measure), and (ii) g ()!g2  12 >0. Hence, by interchanging the variables

and b,

2 2 2y22 2<: 1f (yU M ([ f f g(( I (b)gIg2) 2p (dbxdn)p 2 (dnYl=)P (d1)
Y1 1 1YlY2 Y2YI 1

PybdY2 1='

"-~fP f gl(Mgl(b)l I )1-

Y 1 Yl 2Y1

" $i ] y2 (dbY2-n)Py2l]y I

and under (43b) this can be bounded above by

2 2 2
< f P1 (dC)(y(C),y( ))I P4 =4YII

which completes the proof.

Appendix D

1. Derivation of First and Second Gateaux Variations [(25)-(26)]

Starting with the expression for J as given by (23), we first obtain

AJ(y;h) J(y+h) - J(y)

I - <hy>I + . <yh>1 + 2 <hh>I

+ -f {(F2E 2 [xly 2j + D
2 E2 Myy)IvJ, 1 DD 2  E2 [h(yl)Y2 )22 2 Dl (21 1-2 22 21 "

22 1 2 2 1 2 2+ (D 21 E[h(Yl)IY2 ] , D22F2 [xIy 2 ] + D21D21 E [y(y 1 )y2]) 2 .

+ (D2 1 E [h(y1 )Y2 DIID21 E [h(y ) Y 2 ) 2 1 P (di)
D22D21E

Y21 Y2
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<hE(F1x 1  (D2 1 E [h(y 1) 1y2 1 F2X)2 P (dx,Yl,dE)

Xxi2112 2 i1 22xYlY'

<h,E [D12D21 E [Y(y) IY2
] yl] + E [D1 2F2E 

2 [xly 2 ]fv]>1

- YE1D1D2 2 [y 11Y1>1 21 2
- ~,E [D 1 2D2 1E [h(Y1)1Y211Yll> I - <h,D 2 D2 1 E [E [h(yl)1Y2 fly 1 ]>1

E 6J(y;h) + 6 J(yh)

Now, since 6J(y;h) is homogeneous of degree one, and 6 J(y;h) is homogeneous of degree

two, AJ(-y;h) admits a unique decomposition with the corresponding expressions being

(after some simplification)

22 1 2 2
6J(y;h) = <h,y>1 + f (E

2 [h(y 1)1y2 , D21 D22{F2E [xIY 2
Y2

222
+D 2 E2 [Y(y 1  (dE) <h,E[F1xfy+ 21 [YY) IY2] })I Y2

221 1
- f (E2[h(yl) y2I, D21F2x)1 P (dxY 1 d) (D-1)

2 1 2 F2 1  2 - 2 1

h,D1 2 D21 PIiy(yl) + D12F2
E [E [xIY 2 lYl]>l PlIl h , D21D12¥>I

E2 1 1 2 -22P

2 22 121!2(D-2)
2 pl (d ) <h Di D2 -

where we have used some properties 3f adjoint operators under inner products,

and the notation introduced in (28); we have also made use of the fact that the
1 2

bounded linear operator DID2: Ui-*1I commutes with the double conditional12 21 11

expectation operator PIII (or Plil ) .

We now prove a lemma which will be used in simplifying these expressions

further.

I I " - -" : " . . ' . * * " - " - " , " " -" .V ' v . -. .", ", -, " " .' : .. ' ..' ..
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Lemma D.l. For h(.)E-Ul , 4)
1 29

2 1r(E [ h(y1)Iy2= ] f(~) P (dE)E
Y 2 Y2(D-3)

f (h(n), g (ri)E [g2 (y2)f(y2)1yl=n])l P1  d):

A 1 2 2

- <hg ( 1)EII~(y 2)f(y2)lyl]>l

where g ()are given by (2).

ProofP. The proof follows from the following set of equalities where we are allowed to

change orders of integration because Ul and U2 are Hilbert spaces of random variables

well defined under both measures: j
2 12 1f (E [h(y 1 )Iy 2 =EiI f(O)1 P (di) =f (f h(ri)P Y1 (drgIE), f(E)) P y(di)

Y Y Y2 Y1  y 2

-f f (h(ri), f(E)) P 2  (dnl )P 1 (di)
Y 2Y 1 lIY2

21 2 1
J' f (h(n), () y(~y~~ (rig (O)P y(dn)

Y2Y1 2 1 1

where, in the next to the last line,we have used continuity property of inner product

in pulling out P?2  (dy,1). Now, pulling the integration over Y9 into the
yliy 2 12

inner product, we further obtain

2 1

- P (dn)((h(), g( (g(y 2)f( 2 )ly,=nI) 1

Y 1 '.
1

which is the desired result.

Now, using (D-3) in (D-2) we obtain

2-21 1 1 26 J(y(;h) T<h,h>1 + -r (h(n) , gl (n)D2 1D2 2D2 E [g (y,) E [h(y ) I ,y IP d )
1, 2i 21~P 22d21



2_ 2 1~~
1<hD D .P h> <hD 1 1>

2 '12 21ill1 2 '212P11

~ which verifies (26).

To verify (25) , we apply the result of Lemma D.l1 to (D-1) to obtain

6J(y;h)= <h,y> 1 + <h,g
1 (y 1)D21 D 22 {F

2  g2 (Y2 E[xly 2 11y 1 1

2' 2 2 11
C + D E [(y)E [',(Y1)Iy2I!Yl]'>l - <h,F1 E [xly 1]> 1

C-hg
1  2 1 2 2 1 1 2- 2 1~~

Lh~ (y1)D2 F2E [g (y)E [xjy2]jy1I>1  <h,(D 1 2 D2 1 P1  + DD?

h, 1  21 2 x Y 2 2y]> 12 2h1.y 1-11 l

12 2 1 '1

where 2 and are defined by (27a) and (27b), respectively. This then completes

the verification of (25) and (26).

2. Derivation of' an Expression f'or P the cozwof' P1

Firstly note that

/(1 1 f(y 1 ),h(y 1  1 P (dy 1 ) =f (y(l~ P illh(y 1 ))l P (dy 1

1 Yl 1 ~ 1

E1 12 12
E[(Y(y1),E [E [h(y 1)1y ]1y 1 ) 1  E [(Y(y 1 ),E [h(y )ly2J 1

where we have used the smoothing property of conditional expectation under the

1 1
probability measure P .Now, a further conditioning under P ~ yields

E E[(E [y(yl)1y2 ], E2I[h(y 1)1y2]) 1],

and using (D-3) [cf. Lemma D-l] this becomes equivalent to

E H g (y 1)E2[g2 (Y2 )E1 [-Y(y 1)1y 21ly 1], h(y1))1 ],I

thus proving (32). The first expression in (32) follows by routine manipulations.I
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Appendix E

In this appendix we show that the Stackelberg solution satisfying

(10)-(li) is indeed an equilibrium solution--the so-called strong equilibrium

of a decision problem with a modified (dynamic) information pattern. Towards

this end, let us replace the original decision problem with one in which the

decision (action) variables are y1Er1 and y2Er 2, for DMI and DM2, respectively,

and the information pattern is dynamic (for DM2), with DM2 having access to the

decision y of DM1. Let I and U2 denote the strategy spaces of DM1 and DM2,1DM2

respectively, under this new information pattern; furthermore denote their

generic elements by i and 62' respectively. Now, since DMI has static

information, all permissible policies 31 will be constant mappings: - FI, and

hence U = FI . For DM2, on the other hand, all permissible policies will be

measurable mappings 32: rI F.  Finally, let Ji: Ul X -IR be the cost function

.. of DMi, satisfying the boundary condition

S0(3,) = ji(YY , Er I (E-l)
i 12 i 21 y 1 l' 171

where y2E2 is uniquely defined for each yIEF by
221

= 32(y) in r (E-2)

Now, let (¥,¥,y)EF x2 be a Stackelberg solution to the original decision problem
1 2 1 2

with the unique mapping T satisfying (10). Note that T EU and hence
2 2 2'

relabelling T2 as 62,2 and s as Z?, in (10) and (11), we obtain in view of (E-l)-(E-2)

-s Jl( , 2) < JI(0I112 VSI UI

%'•" _ J 2 (3l , 32)e
2.1, 2(l,2 ) < , 613 2 )  V(2 1 9 2 

)E lXU 2 5

which clearly indicate that ( 32)EU 1x1 2 is a noncooperative Nash equilibrium.

This is, in fact, a stronger equilibrium (called "strong equiIibrium" [17]) because

the second inequality is satisfied not only for S but for all EU .
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